This work is licensed under a Creative Commons Attribution 4.0 International License.
Avoiding Mistakes in Drone Usage in Participatory Mapping: Methodological Considerations during the Pandemic
Corresponding Author(s) : Naufal Naufal
Forest and Society,
Vol. 6 No. 1 (2022): APRIL
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Abdel-Basset, M., Chang, V., & Nabeeh, N. A. (2021). An intelligent framework using disruptive technologies for COVID-19 analysis. Technological Forecasting and Social Change, 163, 120431. https://doi.org/10.1016/J.TECHFORE.2020.120431
- Álvarez Larrain, A., Greco, C., & Tarragó, M. (2021). Participatory mapping and UAV photogrammetry as complementary techniques for landscape archaeology studies: an example from north-western Argentina. Archaeological Prospection, 28(1), 47–61. https://doi.org/10.1002/arp.1794
- Brambach, F., Leuschner, C., Tjoa, A., & Culmsee, H. (2017). Diversity, endemism, and composition of tropical mountain forest communities in Sulawesi, Indonesia, in relation to elevation and soil properties. Perspectives in Plant Ecology, Evolution and Systematics, 27, 68–79. https://doi.org/10.1016/J.PPEES.2017.06.003
- Brem, A., Viardot, E., & Nylund, P. A. (2021). Implications of the coronavirus (COVID-19) outbreak for innovation: Which technologies will improve our lives? Technological Forecasting and Social Change, 163, 120451. https://doi.org/10.1016/J.TECHFORE.2020.120451
- Chambers, R. (2006). Participatory Mapping and Geographic Information Systems: Whose Map? Who Is Empowered and Who Disempowered? Who Gains and Who Loses?. The Electronic Journal on Information Systems in Developing Countries, 25(1), 1-11. https://doi.org/10.1002/j.1681-4835.2006.tb00163.x
- Churiyah, M., Sholikhan, S., Filianti, F., & Sakdiyyah, D. A. (2020). Indonesia Education Readiness Conducting Distance Learning in Covid-19 Pandemic Situation. International Journal of Multicultural and Multireligious Understanding, 7(6), 491. https://doi.org/10.18415/ijmmu.v7i6.1833
- Citterio, A., & Piégay, H. (2009). Overbank sedimentation rates in former channel lakes: characterization and control factors. Sedimentology, Vol. 56(N 2 (February 2009)), 461–482. https://doi.org/10.1111/j.1365-3091.2008.00979.x
- Colloredo-Mansfeld, M., Laso, F. J., & Arce-Nazario, J. (2020). Uav-based participatory mapping: Examining local agricultural knowledge in the Galapagos. In Drones (Vol. 4, Issue 4, pp. 1–13). MDPI AG. https://doi.org/10.3390/drones4040062
- Dandois, J. P., Olano, M., Ellis, E. C., Baghdadi, N., Kerle, N., & Thenkabail, P. S. (2015). Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. 7, 13895–13920. https://doi.org/10.3390/rs71013895
- Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. Science of The Total Environment, 739, 140033. https://doi.org/10.1016/J.SCITOTENV.2020.140033
- González-García, J., Swenson, R. L., & Gómez-Espinosa, A. (2020). Real-time kinematics applied at unmanned aerial vehicles positioning for orthophotography in precision agriculture. Computers and Electronics in Agriculture, 177, 105695. https://doi.org/10.1016/J.COMPAG.2020.105695
- Goswami, R., Roy, K., Dutta, S., Ray, K., Sarkar, S., Brahmachari, K., Nanda, M. K., Mainuddin, M., Banerjee, H., Timsina, J., & Majumdar, K. (2021). Multi-faceted impact and outcome of COVID-19 on smallholder agricultural systems: Integrating qualitative research and fuzzy cognitive mapping to explore resilient strategies. Agricultural Systems, 189, 103051. https://doi.org/10.1016/J.AGSY.2021.103051
- Haqiqi, I., & Horeh, M. B. (2021). Assessment of COVID-19 impacts on U.S. counties using the immediate impact model of local agricultural production (IMLAP). Agricultural Systems, 190, 103132. https://doi.org/10.1016/J.AGSY.2021.103132
- Iese, V., Wairiu, M., Hickey, G. M., Ugalde, D., Salili, D. H., Walenenea Jr, J., ... & Ward, A. C. (2021). Impacts of COVID-19 on agriculture and food systems in Pacific Island countries (PICs): Evidence from communities in Fiji and Solomon Islands. Agricultural Systems, 190, 103099. https://doi.org/10.1016/J.AGSY.2021.103099
- Kotivuori, E., Kukkonen, M., Mehtätalo, L., Maltamo, M., Korhonen, L., & Packalen, P. (2020). Forest inventories for small areas using drone imagery without in-situ field measurements. Remote Sensing of Environment, 237, 111404. https://doi.org/10.1016/J.RSE.2019.111404
- Middendorf, B. J., Faye, A., Middendorf, G., Stewart, Z. P., Jha, P. K., & Prasad, P. V. V. (2021). Smallholder farmer perceptions about the impact of COVID-19 on agriculture and livelihoods in Senegal. Agricultural Systems, 190, 103108. https://doi.org/10.1016/J.AGSY.2021.103108
- Orengo, H. A., & Garcia-Molsosa, A. (2019). A brave new world for archaeological survey: Automated machine learning-based potsherd detection using high-resolution drone imagery. Journal of Archaeological Science, 112, 105013. https://doi.org/10.1016/J.JAS.2019.105013
- Paneque-Gálvez, J., Mccall, M. K., Napoletano, B. M., Wich, S. A., & Koh, L. P. (2014). Small Drones for Community-Based Forest Monitoring: An Assessment of Their Feasibility and Potential in Tropical Areas. 5, 1481–1507. https://doi.org/10.3390/f5061481
- Radjawali, I., & Pye, O. (2017). Drones for justice: inclusive technology and river-related action research along the Kapuas. Geographica Helvetica, 72(1), 17-27. https://doi.org/10.5194/gh-72-17-2017
- Rostan, J. C., Juget, J., & Brun, A. M. (1997). Sedimentation rates measurements in former channels of the upper Rhône river using Chernobyl 137Cs and 134Cs as tracers. Science of The Total Environment, 193(3), 251–262. https://doi.org/10.1016/S0048-9697(96)05348-X
- Rowan, N. J., & Galanakis, C. M. (2020). Unlocking challenges and opportunities presented by COVID-19 pandemic for cross-cutting disruption in agri-food and green deal innovations: Quo Vadis? Science of The Total Environment, 748, 141362. https://doi.org/10.1016/J.SCITOTENV.2020.141362
- Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B., & Schmidtlein, S. (2020). Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 205–215. https://doi.org/10.1016/J.ISPRSJPRS.2020.10.015
- Sidiq, A. (2021). Critical Approaches to GIS and Spatial Mapping in Indonesia Forest Management and Conservation. Forest and Society, 5(2), 190–195. https://doi.org/10.24259/fs.v5i2.10921
- Singh, K. K., & Frazier, A. E. (2018). A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. International Journal of Remote Sensing, 39(15–16), 5078–5098. https://doi.org/10.1080/01431161.2017.1420941
References
Abdel-Basset, M., Chang, V., & Nabeeh, N. A. (2021). An intelligent framework using disruptive technologies for COVID-19 analysis. Technological Forecasting and Social Change, 163, 120431. https://doi.org/10.1016/J.TECHFORE.2020.120431
Álvarez Larrain, A., Greco, C., & Tarragó, M. (2021). Participatory mapping and UAV photogrammetry as complementary techniques for landscape archaeology studies: an example from north-western Argentina. Archaeological Prospection, 28(1), 47–61. https://doi.org/10.1002/arp.1794
Brambach, F., Leuschner, C., Tjoa, A., & Culmsee, H. (2017). Diversity, endemism, and composition of tropical mountain forest communities in Sulawesi, Indonesia, in relation to elevation and soil properties. Perspectives in Plant Ecology, Evolution and Systematics, 27, 68–79. https://doi.org/10.1016/J.PPEES.2017.06.003
Brem, A., Viardot, E., & Nylund, P. A. (2021). Implications of the coronavirus (COVID-19) outbreak for innovation: Which technologies will improve our lives? Technological Forecasting and Social Change, 163, 120451. https://doi.org/10.1016/J.TECHFORE.2020.120451
Chambers, R. (2006). Participatory Mapping and Geographic Information Systems: Whose Map? Who Is Empowered and Who Disempowered? Who Gains and Who Loses?. The Electronic Journal on Information Systems in Developing Countries, 25(1), 1-11. https://doi.org/10.1002/j.1681-4835.2006.tb00163.x
Churiyah, M., Sholikhan, S., Filianti, F., & Sakdiyyah, D. A. (2020). Indonesia Education Readiness Conducting Distance Learning in Covid-19 Pandemic Situation. International Journal of Multicultural and Multireligious Understanding, 7(6), 491. https://doi.org/10.18415/ijmmu.v7i6.1833
Citterio, A., & Piégay, H. (2009). Overbank sedimentation rates in former channel lakes: characterization and control factors. Sedimentology, Vol. 56(N 2 (February 2009)), 461–482. https://doi.org/10.1111/j.1365-3091.2008.00979.x
Colloredo-Mansfeld, M., Laso, F. J., & Arce-Nazario, J. (2020). Uav-based participatory mapping: Examining local agricultural knowledge in the Galapagos. In Drones (Vol. 4, Issue 4, pp. 1–13). MDPI AG. https://doi.org/10.3390/drones4040062
Dandois, J. P., Olano, M., Ellis, E. C., Baghdadi, N., Kerle, N., & Thenkabail, P. S. (2015). Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. 7, 13895–13920. https://doi.org/10.3390/rs71013895
Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. Science of The Total Environment, 739, 140033. https://doi.org/10.1016/J.SCITOTENV.2020.140033
González-García, J., Swenson, R. L., & Gómez-Espinosa, A. (2020). Real-time kinematics applied at unmanned aerial vehicles positioning for orthophotography in precision agriculture. Computers and Electronics in Agriculture, 177, 105695. https://doi.org/10.1016/J.COMPAG.2020.105695
Goswami, R., Roy, K., Dutta, S., Ray, K., Sarkar, S., Brahmachari, K., Nanda, M. K., Mainuddin, M., Banerjee, H., Timsina, J., & Majumdar, K. (2021). Multi-faceted impact and outcome of COVID-19 on smallholder agricultural systems: Integrating qualitative research and fuzzy cognitive mapping to explore resilient strategies. Agricultural Systems, 189, 103051. https://doi.org/10.1016/J.AGSY.2021.103051
Haqiqi, I., & Horeh, M. B. (2021). Assessment of COVID-19 impacts on U.S. counties using the immediate impact model of local agricultural production (IMLAP). Agricultural Systems, 190, 103132. https://doi.org/10.1016/J.AGSY.2021.103132
Iese, V., Wairiu, M., Hickey, G. M., Ugalde, D., Salili, D. H., Walenenea Jr, J., ... & Ward, A. C. (2021). Impacts of COVID-19 on agriculture and food systems in Pacific Island countries (PICs): Evidence from communities in Fiji and Solomon Islands. Agricultural Systems, 190, 103099. https://doi.org/10.1016/J.AGSY.2021.103099
Kotivuori, E., Kukkonen, M., Mehtätalo, L., Maltamo, M., Korhonen, L., & Packalen, P. (2020). Forest inventories for small areas using drone imagery without in-situ field measurements. Remote Sensing of Environment, 237, 111404. https://doi.org/10.1016/J.RSE.2019.111404
Middendorf, B. J., Faye, A., Middendorf, G., Stewart, Z. P., Jha, P. K., & Prasad, P. V. V. (2021). Smallholder farmer perceptions about the impact of COVID-19 on agriculture and livelihoods in Senegal. Agricultural Systems, 190, 103108. https://doi.org/10.1016/J.AGSY.2021.103108
Orengo, H. A., & Garcia-Molsosa, A. (2019). A brave new world for archaeological survey: Automated machine learning-based potsherd detection using high-resolution drone imagery. Journal of Archaeological Science, 112, 105013. https://doi.org/10.1016/J.JAS.2019.105013
Paneque-Gálvez, J., Mccall, M. K., Napoletano, B. M., Wich, S. A., & Koh, L. P. (2014). Small Drones for Community-Based Forest Monitoring: An Assessment of Their Feasibility and Potential in Tropical Areas. 5, 1481–1507. https://doi.org/10.3390/f5061481
Radjawali, I., & Pye, O. (2017). Drones for justice: inclusive technology and river-related action research along the Kapuas. Geographica Helvetica, 72(1), 17-27. https://doi.org/10.5194/gh-72-17-2017
Rostan, J. C., Juget, J., & Brun, A. M. (1997). Sedimentation rates measurements in former channels of the upper Rhône river using Chernobyl 137Cs and 134Cs as tracers. Science of The Total Environment, 193(3), 251–262. https://doi.org/10.1016/S0048-9697(96)05348-X
Rowan, N. J., & Galanakis, C. M. (2020). Unlocking challenges and opportunities presented by COVID-19 pandemic for cross-cutting disruption in agri-food and green deal innovations: Quo Vadis? Science of The Total Environment, 748, 141362. https://doi.org/10.1016/J.SCITOTENV.2020.141362
Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B., & Schmidtlein, S. (2020). Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 205–215. https://doi.org/10.1016/J.ISPRSJPRS.2020.10.015
Sidiq, A. (2021). Critical Approaches to GIS and Spatial Mapping in Indonesia Forest Management and Conservation. Forest and Society, 5(2), 190–195. https://doi.org/10.24259/fs.v5i2.10921
Singh, K. K., & Frazier, A. E. (2018). A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. International Journal of Remote Sensing, 39(15–16), 5078–5098. https://doi.org/10.1080/01431161.2017.1420941