This work is licensed under a Creative Commons Attribution 4.0 International License.
The Role of El Nino Variability and Peatland in Burnt Area and Emitted Carbon in Forest Fire Modeling
Corresponding Author(s) : Ida Bagus Mandhara Brasika
Forest and Society,
Vol. 6 No. 1 (2022): APRIL
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J. P. (2002). Determination of deforestation rates of the world's humid tropical forests. Science, 297(5583), 999-1002. https://doi.org/10.1126/science.1070656
- Barnston, A. (2014). How ENSO leads to a cascade of global impacts. Retrieved from https://www.climate.gov/news-features/blogs/enso/how-enso-leads-cascade-global-impacts
- Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L., Ménard, C. B., . . . Harding, R. J. (2011). The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes, Geoscience Model Development, 4, 677-699. https://doi.org/10.5194/gmd-4-677-2011
- Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., ... & Stewart, M. F. (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research: Atmospheres, 108(D1), ACL-4. https://doi.org/10.1029/2002JD002347
- Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., . . . Cox, P. M. (2011). The Joint UK Land Environment Simulator (JULES), model description- Part 2: Carbon fluxes and vegetation dynamics. Geoscience Model Development, 4, 701-722. https://doi.org/10.5194/gmd-4-701-2011
- Cochrane, M. A. (2003). Fire science for rainforests. Nature, 421(6926), 913-919. https://doi.org/10.1038/nature01437
- Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., ... & Vitart, F. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553-597. https://doi.org/10.1002/qj.828
- Field, R., van der Werf, G. & Shen, S. (2009). Human amplification of drought-induced biomass burning in Indonesia since 1960. Nature Geosci, II, 185-188.
- Frandsen, W. (1997). Ignition probability of organic soils. Can. J.For. Res. , 27(9), 1471-1477.
- Friedlingstein, P., Bopp, L., Ciais, P., Dufresne, J. L., Fairhead, L., LeTreut, H., ... & Orr, J. (2001). Positive feedback between future climate change and the carbon cycle. Geophysical Research Letters, 28(8), 1543-1546. https://doi.org/10.1029/2000GL012015
- Friedlingstein, P., Dufresne, J. L., Cox, P. M., & Rayner, P. (2003). How positive is the feedback between climate change and the carbon cycle?. Tellus B: Chemical and Physical Meteorology, 55(2), 692-700. https://doi.org/10.3402/tellusb.v55i2.16765
- Fuller, D. O. (2006). Tropical forest monitoring and remote sensing: A new era of transparency in forest governance? Singapore Journal of Tropical Geography, 27(1), 15-29. https://doi.org/10.1111/j.1467-9493.2006.00237.x
- Giglio, L., Randerson, J. T. & van der Werf, G. (2013). Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 118(1), 317-328. https://doi.org/10.1002/jgrg.20042
- Goff, J. & Gratch, S. (1946). Low-pressure properties of water from 160 to 212 F. Transactions of the American Society of Heating and Ventilating Engineers, 52, 95-121.
- Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., ... & Yue, C. (2016). The status and challenge of global fire modelling. Biogeosciences, 13(11), 3359-3375. https://doi.org/10.5194/bg-13-3359-2016
- Hoojier, A., Page, S., Canadell, J., Silvius, M., Kwadijk, J., Wosten, H. & Jauhiainen. (2010). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7(5), 1505-1514. https://doi.org/10.5194/bg-7-1505-2010
- Huntrieser, H., Schumann, U., Schlager, H., Höller, H., Giez, A., Betz, H. D., ... & Calheiros, R. (2008). Lightning activity in Brazilian thunderstorms during TROCCINOX: implications for NO x production. Atmospheric Chemistry and Physics, 8(4), 921-953. https://doi.org/10.5194/acp-8-921-2008
- Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., ... & Wang, Y. P. (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic change, 109(1), 117-161. https://doi.org/10.1007/s10584-011-0153-2
- Labadz, J., Allott, T., Evans, M., Butcher, D., Bilett, M., Stainer, S., . . . Hart, R. (2010). Peatland Hydrology. IUCN Hydrology and Restoration Workshop.
- Langner, A. & Siegert, F. (2007). The role of fire on land cover changes in Borneo. Sevilla-Espana Wildfire 2007.
- Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., . . . Zeng, N. (2015). Global carbon budget 2014. Earth System Science Data, 7(1), 47-85. https://doi.org/10.5194/essd-7-47-2015
- Li, F., Levis, S., & Ward, D. S. (2013). Quantifying the role of fire in the Earth system–Part 1: Improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences, 10(4), 2293-2314. https://doi.org/10.5194/bg102293-2013
- Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., ... & Eldering, A. (2017). Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 358(6360), 1-7. https://doi.org/10.1126/science.aam5690
- Mangeon, S. (2016). Developing and evaluating a global model for landscape fires. [Doctoral Dissertation], Imperial College London. https://doi.org/10.25560/ 48066
- Mangeon, S., Voulgarakis, A., Gilham, R., Harper, A., Sitch, S., & Folberth, G. (2016). INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model. Geoscientific Model Development, 9(8), 2685-2700. https://doi.org/10.5194/gmd-9-2685-2016
- National Weather Service. (2015). Cold & Warm Episodes by Season. Retrieved from http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
- Page, S. E., Siegert, F., Rieley, J. O., Boehm, H. D. V., Jaya, A., & Limin, S. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420(6911), 61-65. https://doi.org/10.1038/nature01131
- Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva, T., Silvius, M. & Stringer, L. (2008). Assesment on Peatlands, Biodiversity and Climate Change. Wetlands International. Wageningen: Global Environment Centre.
- Pechony, O. & Shindell, D. (2009). Fire parameterization on a global scale. Journal of Gephysical Research: Atmospheres, 114(D16). https://doi.org/10.1029/2009JD011927
- Rein, G. (2016). Smoldering Combustion. In M. J. Hurley (Ed.), SFPE Handbook of Fire Protection Engineering (Vol. 5). Springer.
- Rieley, J. & Page, S. (2005). Wise Use of Tropical Peatland: Focus on Southeast Asia. ALTERA-Wageningen University and Research Centre and the EU INCO-STRAPEAT and RESTORPEAT Partnership.
- Siegert, F., Ruecker, G., Hinrichs, A., & Hoffmann, A. A. (2001). Increased damage from fires in logged forests during droughts caused by El Nino. Nature, 414(6862), 437-440. https://doi.org/10.1038/35106547
- Someshwar, S., Boer, R. & Conrad, E. (2007). World Resources Report Case Study. Managing Peatland Fire Risk in Central Kalimantan, Indonesia. World Resources Report.
- Soulsby, C., Tetzlaff, A., Rodgers, P., Dunn, S. & Waldron, S. (2006). Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: An initial evaluation. Journal of Hydrology, 325, 197-221.
- Stocker, B. D., Spahni, R., & Joos, F. (2014). DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geoscientific Model Development, 7(6), 3089-3110. https://doi.org/10.5194/gmd-7-3089-2014
- Stocker, B. D., Yu, Z., Massa, C., & Joos, F. (2017). Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proceedings of the National Academy of Sciences, 114(7), 1492-1497. https://doi.org/10.1073/pnas.1613889114
- Trigg, S. N., Curran, L. M., & McDonald, A. K. (2006). Utility of Landsat 7 satellite data for continued monitoring of forest cover change in protected areas in Southeast Asia. Singapore Journal of Tropical Geography, 27(1), 49-66. https://doi.org/10.1111/j.1467-9493.2006.00239.x
- van der Werf, G., Randerson, J., Giglio, L., Collatz, G., Kasibhatla, P. & Arellano Jr., A. (2006). Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 6(11), 3423-3441. https://doi.org/10.5194/acp-6-3423-2006
- van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., ... & van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric chemistry and physics, 10(23), 11707-11735. https://doi.org/10.5194/acp-10-11707-2010
- Venevsky, S., Thonicke, K., Sitch, S., & Cramer, W. (2002). Simulating fire regimes in human‐dominated ecosystems: Iberian Peninsula case study. Global Change Biology, 8(10), 984-998. https://doi.org/10.1046/j.1365-2486.2002.00528.x
- Wooster, M. J., Perry, G. L. W., & Zoumas, A. (2012). Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences, 9(1), 317-340. https://doi.org/10.5194/bg-9-317-2012
- World Resources Institute. (2016, March 21). globalforestwatch.org. Retrieved from http://fires.globalforestwatch.org/report/index.html#aoitype=ISLAND&dates=fYear-2016!fMonth-3!fDay-14!tYear-2016!tMonth-3!tDay-21&aois=Sulawesi! Maluku!Lesser%20Sunda!Java!Papua!Kalimantan!Sumatra
References
Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J. P. (2002). Determination of deforestation rates of the world's humid tropical forests. Science, 297(5583), 999-1002. https://doi.org/10.1126/science.1070656
Barnston, A. (2014). How ENSO leads to a cascade of global impacts. Retrieved from https://www.climate.gov/news-features/blogs/enso/how-enso-leads-cascade-global-impacts
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L., Ménard, C. B., . . . Harding, R. J. (2011). The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes, Geoscience Model Development, 4, 677-699. https://doi.org/10.5194/gmd-4-677-2011
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., ... & Stewart, M. F. (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research: Atmospheres, 108(D1), ACL-4. https://doi.org/10.1029/2002JD002347
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., . . . Cox, P. M. (2011). The Joint UK Land Environment Simulator (JULES), model description- Part 2: Carbon fluxes and vegetation dynamics. Geoscience Model Development, 4, 701-722. https://doi.org/10.5194/gmd-4-701-2011
Cochrane, M. A. (2003). Fire science for rainforests. Nature, 421(6926), 913-919. https://doi.org/10.1038/nature01437
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., ... & Vitart, F. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553-597. https://doi.org/10.1002/qj.828
Field, R., van der Werf, G. & Shen, S. (2009). Human amplification of drought-induced biomass burning in Indonesia since 1960. Nature Geosci, II, 185-188.
Frandsen, W. (1997). Ignition probability of organic soils. Can. J.For. Res. , 27(9), 1471-1477.
Friedlingstein, P., Bopp, L., Ciais, P., Dufresne, J. L., Fairhead, L., LeTreut, H., ... & Orr, J. (2001). Positive feedback between future climate change and the carbon cycle. Geophysical Research Letters, 28(8), 1543-1546. https://doi.org/10.1029/2000GL012015
Friedlingstein, P., Dufresne, J. L., Cox, P. M., & Rayner, P. (2003). How positive is the feedback between climate change and the carbon cycle?. Tellus B: Chemical and Physical Meteorology, 55(2), 692-700. https://doi.org/10.3402/tellusb.v55i2.16765
Fuller, D. O. (2006). Tropical forest monitoring and remote sensing: A new era of transparency in forest governance? Singapore Journal of Tropical Geography, 27(1), 15-29. https://doi.org/10.1111/j.1467-9493.2006.00237.x
Giglio, L., Randerson, J. T. & van der Werf, G. (2013). Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 118(1), 317-328. https://doi.org/10.1002/jgrg.20042
Goff, J. & Gratch, S. (1946). Low-pressure properties of water from 160 to 212 F. Transactions of the American Society of Heating and Ventilating Engineers, 52, 95-121.
Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., ... & Yue, C. (2016). The status and challenge of global fire modelling. Biogeosciences, 13(11), 3359-3375. https://doi.org/10.5194/bg-13-3359-2016
Hoojier, A., Page, S., Canadell, J., Silvius, M., Kwadijk, J., Wosten, H. & Jauhiainen. (2010). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7(5), 1505-1514. https://doi.org/10.5194/bg-7-1505-2010
Huntrieser, H., Schumann, U., Schlager, H., Höller, H., Giez, A., Betz, H. D., ... & Calheiros, R. (2008). Lightning activity in Brazilian thunderstorms during TROCCINOX: implications for NO x production. Atmospheric Chemistry and Physics, 8(4), 921-953. https://doi.org/10.5194/acp-8-921-2008
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., ... & Wang, Y. P. (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic change, 109(1), 117-161. https://doi.org/10.1007/s10584-011-0153-2
Labadz, J., Allott, T., Evans, M., Butcher, D., Bilett, M., Stainer, S., . . . Hart, R. (2010). Peatland Hydrology. IUCN Hydrology and Restoration Workshop.
Langner, A. & Siegert, F. (2007). The role of fire on land cover changes in Borneo. Sevilla-Espana Wildfire 2007.
Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., . . . Zeng, N. (2015). Global carbon budget 2014. Earth System Science Data, 7(1), 47-85. https://doi.org/10.5194/essd-7-47-2015
Li, F., Levis, S., & Ward, D. S. (2013). Quantifying the role of fire in the Earth system–Part 1: Improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences, 10(4), 2293-2314. https://doi.org/10.5194/bg102293-2013
Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., ... & Eldering, A. (2017). Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 358(6360), 1-7. https://doi.org/10.1126/science.aam5690
Mangeon, S. (2016). Developing and evaluating a global model for landscape fires. [Doctoral Dissertation], Imperial College London. https://doi.org/10.25560/ 48066
Mangeon, S., Voulgarakis, A., Gilham, R., Harper, A., Sitch, S., & Folberth, G. (2016). INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model. Geoscientific Model Development, 9(8), 2685-2700. https://doi.org/10.5194/gmd-9-2685-2016
National Weather Service. (2015). Cold & Warm Episodes by Season. Retrieved from http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
Page, S. E., Siegert, F., Rieley, J. O., Boehm, H. D. V., Jaya, A., & Limin, S. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420(6911), 61-65. https://doi.org/10.1038/nature01131
Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva, T., Silvius, M. & Stringer, L. (2008). Assesment on Peatlands, Biodiversity and Climate Change. Wetlands International. Wageningen: Global Environment Centre.
Pechony, O. & Shindell, D. (2009). Fire parameterization on a global scale. Journal of Gephysical Research: Atmospheres, 114(D16). https://doi.org/10.1029/2009JD011927
Rein, G. (2016). Smoldering Combustion. In M. J. Hurley (Ed.), SFPE Handbook of Fire Protection Engineering (Vol. 5). Springer.
Rieley, J. & Page, S. (2005). Wise Use of Tropical Peatland: Focus on Southeast Asia. ALTERA-Wageningen University and Research Centre and the EU INCO-STRAPEAT and RESTORPEAT Partnership.
Siegert, F., Ruecker, G., Hinrichs, A., & Hoffmann, A. A. (2001). Increased damage from fires in logged forests during droughts caused by El Nino. Nature, 414(6862), 437-440. https://doi.org/10.1038/35106547
Someshwar, S., Boer, R. & Conrad, E. (2007). World Resources Report Case Study. Managing Peatland Fire Risk in Central Kalimantan, Indonesia. World Resources Report.
Soulsby, C., Tetzlaff, A., Rodgers, P., Dunn, S. & Waldron, S. (2006). Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: An initial evaluation. Journal of Hydrology, 325, 197-221.
Stocker, B. D., Spahni, R., & Joos, F. (2014). DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geoscientific Model Development, 7(6), 3089-3110. https://doi.org/10.5194/gmd-7-3089-2014
Stocker, B. D., Yu, Z., Massa, C., & Joos, F. (2017). Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proceedings of the National Academy of Sciences, 114(7), 1492-1497. https://doi.org/10.1073/pnas.1613889114
Trigg, S. N., Curran, L. M., & McDonald, A. K. (2006). Utility of Landsat 7 satellite data for continued monitoring of forest cover change in protected areas in Southeast Asia. Singapore Journal of Tropical Geography, 27(1), 49-66. https://doi.org/10.1111/j.1467-9493.2006.00239.x
van der Werf, G., Randerson, J., Giglio, L., Collatz, G., Kasibhatla, P. & Arellano Jr., A. (2006). Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 6(11), 3423-3441. https://doi.org/10.5194/acp-6-3423-2006
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., ... & van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric chemistry and physics, 10(23), 11707-11735. https://doi.org/10.5194/acp-10-11707-2010
Venevsky, S., Thonicke, K., Sitch, S., & Cramer, W. (2002). Simulating fire regimes in human‐dominated ecosystems: Iberian Peninsula case study. Global Change Biology, 8(10), 984-998. https://doi.org/10.1046/j.1365-2486.2002.00528.x
Wooster, M. J., Perry, G. L. W., & Zoumas, A. (2012). Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences, 9(1), 317-340. https://doi.org/10.5194/bg-9-317-2012
World Resources Institute. (2016, March 21). globalforestwatch.org. Retrieved from http://fires.globalforestwatch.org/report/index.html#aoitype=ISLAND&dates=fYear-2016!fMonth-3!fDay-14!tYear-2016!tMonth-3!tDay-21&aois=Sulawesi! Maluku!Lesser%20Sunda!Java!Papua!Kalimantan!Sumatra